DNA replication origins in Haloferax volcanii

Hawkins, Michelle (2009) DNA replication origins in Haloferax volcanii. PhD thesis, University of Nottingham.



DNA replication is fundamental to the proliferation of life. Sites of DNA replication initiation are called replication origins. Bacteria replicate from a single origin whereas eukaryotes utilise multiple origins for each chromosome. The archaeal domain includes species which replicate using multiple origins of replication in addition to those which use a single origin. Archaeal DNA replication proteins are similar to eukaryotic replication machinery. Most characterised archaeal origins are adjacent to an orc gene which encodes a homologue of the Orc1 subunit of the eukaryotic initiator protein complex.

Replication origins of the halophilic archaeon Haloferax volcanii were identified using a combination of genetic, biochemical and bioinformatic approaches. H. volcanii has a multireplicon genome consisting of a circular main chromosome and three mini-chromosomes: pHV1, pHV3 and pHV4. The major chromosome contains multiple origins of replication and is the first example of multiple origins on a single replicon in the Euryarchaeota. Each characterised origin is adjacent to an orc gene and contains repeated sequence motifs surrounding an A/T-rich duplex unwinding element.

The archaeal recombinase, RadA, is homologous to eukaryotic and bacterial Rad51/RecA. It is widely held that deletion of radA results in elimination of homologous recombination. In this study the discovery of a radA-independent recombination pathway specific to replication origins is described. This dynamic mechanism was identified by observing chromosomal integration of plasmids containing H. volcanii replication origins in a radA deletion strain.

The eukaryotic RAD25 gene is involved in nucleotide excision repair and transcription. H. volcanii has four RAD25 homologues, one on pHV4 and three near the oriC-2 locus on the main chromosome. A role for the assistance of oriC-2 firing is proposed based on autonomously replicating plasmid assays. Deletion of all four RAD25 homologues did not increase DNA damage sensitivity but resulted in a minor growth defect.

Item Type:Thesis (PhD)
Supervisors:Allers, T.
Uncontrolled Keywords:DNA replication, Haloferax volcanii, Archaebacteria, Bacterial genetics
Faculties/Schools:UK Campuses > Faculty of Medicine and Health Sciences > School of Biology
ID Code:853
Deposited By:Dr Michelle S Hawkins
Deposited On:11 Nov 2009 11:10
Last Modified:11 Nov 2009 11:10

Archive Staff Only: item control page